Self Avoiding Random Walk

Cihan Cicek
cicek154@gmail.com

February 20, 2021

Contents

1

Preparation

Elementary Simple Sampling (ESS)

The Slithering Snake Algorithm

Irreducibility

Mean Square Displacement

Estimating v with Linear Regression

Conclusion

Appendix

One more example ” Verdier and Stockmayer (1962)”

Chronological History[1]

10

15

16

17

18

20

*Important note:

This project has prepared for ”Advanced Monte Carlo Methods” lecture in winter term
2020/2021, Heidelberg University.

Instead of adding same citations of the book in each part, I hereby declare that almost all
of the explanations and formulas are taken from the book of ”The Self-Avoiding Walk, Neal
Madras and Gordon Slade, 1996”. [1]

Only python codes are implemented by myself.

1 Preparation

A self-avoiding walk (SAW) on a graph is a walk that never visits the same vertex twice. it is
typical example of non-Markov random walks on graphs. This most basic and fully random
process gives us usefull model to apply numerous type of statistical physics problems

One of the basic questions concerning random walks are:

- What is the asymptotic behavior of the walk as the number of steps tends to infinity? To
be more specific, if X(N) denotes the location of the walker starting at the origin after N
steps, does the mean square displacement show a power behavior? In other words, does the

following hold in some sense?
B[|X(n)]’] ~ N*

where | X (N)| denotes the Euclidean distance from the starting point and v is a positive
constant. If it is the case, what is the value of the displacement exponent v?

The question originated from the problem of the end-to-end distance of long polymers. Since
no two monomers can occupy the same place, a self-avoiding walk is expected to model
polymers. [2]

These properties of SAW have been studied in various papers and There has been numerous
different numerical aproaches for mean square displacement estimation and the exponent
v calculations. In this paper I will try to estimate v parameter by using linear regrassion
method and for Slitherin Snake Length conserved SAW algorithm.

To be able to carry out that I need some standart Python Libraries:

1

import numpy as np

import matplotlib.pyplot as plt

from scipy import sparse

from matplotlib.ticker import PercentFormatter
import sys

import time

import random

import copy

Wery usefull reading: https://www.physicsforums.com/insights/fun-self-avoiding-walks/

N

16

print (sys.getrecursionlimit()) ## to see current recursionlimit

def recursionlimit (recursionlimit): # set recursionlimit to another value
return sys.setrecursionlimit(recursionlimit)

recursionlimit (20000)
print ('original recursionlimit was 3000’)
sys.getrecursionlimit ()

#printed

L] LI 1) 1))] J L] 1))] L)1) J))] 1]]
i i s v i s i o e e i e e v
T 777 T 1777777 T T 7

20000
original recursionlimit was 3000

20000

2 Elementary Simple Sampling (ESS)

This algorithm generates ordinary simple random walks until it obtains an N-step walk that
is self-avoiding.

The code:
1. Let w(O) be the origin and set i = 0.

2. Increase i by one. Choose one of the 2d neighbours of w(i — 1) at random, and let w(7)
be that point.

3. If w(i) = w(j) for some j = 1,2, ... N-1. then go back to Step 1. Otherwise go to Step
2ifi < N, and stop if i = N.

the walk W = (w(0),...,w(N)) is selfavoiding. We claim that for any w € Sy, we have
Pr(W=w)=-=L1

cN
To see this, let Sy be the set of all N step (ordinary) simple walks. If we keep choosing
members of Sy uniformly at random until one of them is in Sy , then the final result is

evidently uniformly distributed on Sy.

— the probability that an N-step simple random walk is self-avoiding; (2(’;%, the (2d)N term

is the number of all possible simple random walks. so the expected number of attempts
N

(i.e.returns to Step 1) is % Therefore, using the notation Tx to represent the expected

amount of computer time required for algorithm X to generate a single N -step self-avoiding

walk, we have,

2d
TESS — (7)N+O(N)

We can improve on the efficiency of ESS by only generating simple random walks with no
immediate reversals.

o def ESSSAW(N):

10

12

16

18

22

24

26

28

30

11

Possible directions
deltas = [[1,0], [0,1], [-1,0], [0,—1]]

container

a = [0,0]

wi =[]

for j in range(N+1):
wi.append ([0,0])

w = wi

Main
for i in range(N):

randomly chosen step
dw= deltas [np.random.randint (0,4)]
al0] = w[i][0]+ dw[O]
al[l] = w[i][1]4+ dw][1]

whether SAW or not
if a in w:
#if not call again the same function recursively

w = ESSSAW(N)

break

else:
w[i+1][0] = a[0]
wli+1][1] = a[l]

return w

def

plot_ess_.SAW (N, fnc) :

9999 99

Plots the output of the ESSSAW algorithm

Args:
N (int): the length of the walk
Returns:
Plot of the output of the ESSRAW algorithms

99999

s_time=time. time ()
w = fnc (N)

15 e_time=time . time ()
print ('Computation time:’,e_time—s_time, ’s’)

19 for i in range(N+1):
x.append (w[i][0])

21 y.append (w[i][1])

plt.figure(figsize = (10, 10))

plt . title (str(fnc)+ ’Lenght N =" + str(N), fontsize=14, fontweight="bold’,

i)
i]]

V)

x, y, 'bo—’, linewidth = 1)
0, 0, 'go’, ms = 12, label = ’"Start’)
x[—-1], y[-1], 'ro’, ms = 12, label = ’End’)

plt.legend (fontsize=15)
29 plt .show ()
plt.savefig(’plot_ess_.SAW .png’)

plot_ess_.SAW (15 ,ESS_SAW)

Computation time: 0.0007064342498779297 s

<function ESS_SAW at 0x7f9308545d90>Lenght N =15

0 'Y @® Start
® End

j |]

-5 -4 -2 [2

Figure 1: ESS SAW.

11

21

3 The Slithering Snake Algorithm

The Slithering Snake length-conserving dynamic algorithm was devised by Kron (1965) and
by Wall and Mandel (1975) [see also Kron et at. (1967) and Mandel (1979)]. The basic move
of the algorithm is to remove a bond from one end of the current walk while simultaneously
trying to add a bond to the other end (rejecting the result if it is not self-avoiding). For
an explicit description, use the following procedure as Step 2 in the Generic Fixed-Length
Dynamic Algorithm.

1) Generate a random variable X which equals 0 with probability 1/2 and equals N with
probability 1/2.

2) If X = 0, then let Y be one of the 2d nearest neighbours of w!(0) (chosen uniformly at
random)

3) and set @ = (Y,w(0), ..., w (N — 1))
4) If X = N then let Y be one of the 2d nearest neighbours of wl(N)
5) and set @ = (wl(1), ..., W (N),Y)

def slithering_snake (w):

by choosing randomly one of the end (first or last) point of a given w—

SAW
is going to change with new nearest neighbours of the point
so that produce a new SAR w_new.

Args:

w: (x, y) (list, list) SAW
Returns:

woanew: (x, y) (list, list) SAW

N = len (w)

take randomly 0 or N

x = random. choice ([0 ,N])

SAW possible steps

deltas = [[1,0], [0,1], [-1,0], [0,—1]]
get one of them randomly

dw= deltas [np.random.randint (0,4)]

w_new = copy .deepcopy (w)

wnew =|]

change first point of SAW, w

37
if x = 0:
39
delete the last element of w
41
del w_new[—1]
43
add first step to do 3)
45
wnew [0:0] = [dw]
47
else:
49
change last point of SAW, w
51
del w_new [0]
53
w_new .append ([wnew[—1][0] + dw[O0] ,wmew [—1][1] + dw[1]])
57 # check SAW or not
59 # to do that create a new list which has only unique elements
b={]
61
for [a,c] in w_new:
63 # Add to the new list
only if not present
65 if [a,c] not in b:
b.append ([a,c])
67
if len(b) != len(w_new):
69 # print ('not saw’)
wnew = slithering_snake (w)
71
else:
73 # print ('saw)
#translate all points to be first step (0,0)
75
get the first element of the list
77
f = copy.deepcopy (w_new[0])
79
translate so that it begins at the origin.
81
for [a,b] in w._new:
83 wnew . append ([a—f [0] ,b—f[1]])
85 return wnew

10

16

26

def plot_cicek (w):

x =]
y =]
for i in range(len(w)):

x.append (w[i][0])

y-append (w[i][1])
plt . figure(figsize = (6, 6))
plt.title (’SAW of Lenght N =’ + str(len(w)), fontsize=14, fontweight="’
bold’, y = 1. 05)
plt.plot(x, y, ’'bo—’, linewidth = 1)
plt.plot(O, 'go’, ms = 12, label = ’Start’)
plt.plot (x[—] y[—1], ’ro’, ms = 12, label = ’End’)
plt.axis(’equal’)
plt.legend (fontsize=15)
plt.savefig(’plot_cicek2 .png’)
plt .show ()

w = ESSSAW (20)

ws = slithering_snake (w)

print (ws

)

plot_cicek (ws)

1 #printed
[[0, 0}7 [71a O]a [*1, *1]7 [*1’ *2]7 [*2’ -2
[_37 _1]7 [_37 0]7 [_4a 0]7 [_47 1]’ [_
[_67 4]5 [—6, 3]7 [_7, 3]’ [_77 4]7 [_77 5

SAW of Lenght N =21 SAW of Lenght N =21

5 ® Start ! . @ Start
_ ® End ® End
4 * 2 b []

0 +—o
-2 L] L]
-1 L] L]
-2 L] -3 L]
-8 & - 2 b F & 5 4 3 2 4 0
(a) slithering snake. (b) slithering snake2.

Figure 2: For a given SAW two different results of Slithering Snake

> plot_cicek (w)

4 Irreducibility

The nature of these moves has earned this algorithm and its variants the names ”slithering
snake” and "reptation” (the latter term is also used in polymer dynamics to describe similar
motions of real polymers.) This algorithm is reversible, but it is not irreducible:for example
a given ESS SAW below:

Stucked SAW of Lenght N =17

® Start
® End

Figure 3: Stuck.

the walk is frozen with respect to the slithering-snake algorithm in Z2. In fact, for sufficiently
large N, it turns out that a positive fraction of all N-step walks are frozen, because there is
a positive probability that both ends of the walk are "trapped” and cannot be extended by
a single step in any direction.

To be more precise, let 5 denote the set of all walks in Sy which are frozen with respect to
the slithering-snake algorithm (that is, w is in @y if and only if the ergodicity class containing
w has cardinality one). let P be a proper front pattern with the property that the 2d nearest
neighbours of the first site of P are all sites of P.Let R be the walk whose sites are the sites
of P in reverse order Then any self-avoiding walk that begins with the pattern P and ends
with the pattern R must be frozen Sy (P, R) C ®y. Therefore;

o
limN7>oo M > O
CN

More detailed discussion, (Madras and Slade, 1996, p. 320)

5 Mean Square Displacement

Denoting expectation with respect to the uniform measure by angular brackets, the average
distance (squared) from the origin after N steps is then given by the mean-square displace-
ment

1
< (NP >= —Suenlw(V)P

10

Where C) denote the number of N-step self-avoiding walks beginning at the origin.

Like C, the mean-square displacement can also be calculated by hand for very small values
of N, but the combinatorics quickly become intractable as N increases.

It is instructive to compare the behaviour of the self-avoiding walk with that of the simple
random walk. An N-step simple random walk on Z¢ starting at the origin, is a sequence
w = (w(0),w(l),...,w(N)) of sites with w(0) = 0 and |w(j + 1) — w(j)| = 1, with the
uniform measure on the set of all such walks. Without the self-avoidance constraint the
situation is rather easy. Indeed, since each site has 2d nearest neighbours, the number of
N -step simple random walks is exactly (2d)". To analyse the mean square displacement,
we represent the simple random walk in the following way. Let X® be independent and
identically distributed random variables with X) uniformly distributed over the 2d (positive
and negative) unit vectors. Then the position after N steps can be represented as the sum
Sy =XO 4+ x@ 1 1+ XN Expanding |Sy|? the mean-square displacement is given by

N
<|SyP>=) <XV XD >

ij=1

For i # j, < X® X0 >= 0, using independence and the fact that < X® >= 0. Since
< X0 X0) >=1 | it follows that the mean-square displacement is equal to N. Similarly,
if we consider a random walk in Z¢ in which steps lie in a symmetric finite set Q C Z¢ of
cardinality ||, with each possible step equally likely, then the number of N-step walks is
|2|Y and the mean-square displacement is No? where o2 is the mean-square displacement
of a single step. (in our question it is eqal to ”17)

For the self-avoiding walk it is believed that there is exponential growth of C'y with power
law corrections, unlike the pure exponential growth of the simple random walk. It is also
believed that the mean-square displace- ment will not always be linear in the number of steps,
in contrast to the diffusive behaviour of the simple random walk. These beliefs are in har-
mony with known properties of other models of statistical mechanics, and are supported by
numerical and nonrigorous calculations. The conjectured behaviour of Cy and < |w(N)[? >
is thus:

Cp ~ AN N1

and,

< |w(N)|?* >~ DN%

(Madras and Slade, 1996, p. 3,4,5)

2

2to see more detailed discussion, (Madras and Slade, 1996, p. 292)

11

def S(w):

3 "7’ calculate displacement square dx**2 + dy**2 for w’’’

ot

S =w[—1][0]*%2 + w[—1][1]*%2

7 return S

> def mean_square_displacement (times ,w):

AR

4 Args:

6 times: integer , number of desired samples
8 w: (x, y) (list, list) SAW

10 Returns:

12 s.n/times: float type Mean Square

14 7

print (’given SAW w:’)
16 # print()
print (w)

s_time=time.time ()
20

by using slithering_snake method produce a new SAW

22 w123 = slithering_snake (w)

24
s.n = 0.0 # for mean
26
for 1 in range(times):
28 w123 = slithering_snake (wl23)
s.n +=S(wl123)
30
e_time=time . time ()

32
print (’Computation time:’,e_time—s_time, ’'s’)

34 return s_n/times
1

mean_square_displacement (10000 ,w)
3

#printed
- /II,/,I/,I//I/’I I/,I/’/I/,I ///////I// I,/,I/’I//,I /,I,I/’I/,/I/,I I,/,I/’I//,I // I///
e R

12

1

7

10

14

16

20

22

24

26

28

30

32

34

36

38

40

72.2278

def main_cicek (N, times):
#times: number of samples

SN =[]

print (’Computation time N step size ESSSAW?’)

#s_time3=time . time ()

for 1 in range(2,N+1): #to create from 2 step to N step SAW by using

ESS.SAW function

s_time2=time. time ()

ESSSAW algorithm might give RecursionError

then try it again
while N > 0:
try:
w = ESSSAW (1)
break
except RecursionError:
pass

e_time2=time . time ()

print (" {:.5f}” . format ((e-time2—s_time2)*100),

str(i), end="\r”, flush=True)

for N<1l step SAWs, it is enough to work with 10000 samples

if i < 11 and times >20000:

S1 = mean_square_displacement (20000 ,w)

S_N.append(Sl])
else:

calculate mean_square_displacements
S1 = mean_square_displacement (times ,w)

S_N.append(Sl)
#e_time3=time . time ()
#print (e_time3—s_time3 , ' s

return S_N

def plot_cico (N, times):

"77?Possible improvement is that one can create times list ,

13

because it does not need too much samples for few steps.
5 Actually the mean can easily stabilize N<10 step SAW’’’

-~

s_time=time. time ()

9 Ni = np.arange(2,N+1,1) # contains different N steps, from 1 to N
y = main_cicek (N, times)

plt . figure (figsize = (7, 7))

13 plt.plot (Ni, y)
plt.title ('SAWs of Length up to = > + str(N) + ~’ (Mean calculated by ~’
+ str(times) + ' samples SAW)’ [fontsize=14, fontweight="bold’, y =

1.05)

15 plt.ylabel (SN mean’)
plt . xlabel (’N")

17 plt .show ()

plt.savefig(’plot_cico.png’)

e_time=time. time ()

21
print (7 Totat Computation time:’ (e_time—s_time)x100, ’s’)
23
plot_cico (25,100000)
25
#printed

- /I// I////I [/ // I/// 1] i I///// // // I/// 1] i I///// 1] // I/// 1] i // /]
O T AT T T T T i i i i i i i i i i i it

20 Computation time N step size ESSSAW
16.35380 s 25

/s of Length up to = 25 (Mean calculated by 100000 samples ¢

100

5 N mean
3

20 1

Figure 4: SAWs of Mean Square Length up to 25 steps.

14

Totat Computation time: 20481.652569770813 s

6 Estimating v with Linear Regression

On a double-logarithmic scale it can be seen more precisely

< |w(N)|? >~ DN?*
Y = DN%

log(Y) = log(D) + 2viog(N)

Is of Length up to = 25 (Mean calculated by 200000 samples ¢

10¢

5 N mean

Figure 5: SAWs of Mean Square Length up to 25 steps (log. scaled).

Computation time N step size ESS SAW 45.16487 s 25

1
linear fit
3 from sklearn.linear_model import LinearRegression

5 N=25
times = 200000

get mean square displacements up to N steps
9 SN = main_cicek (N, times)

11 # in logarithmic scale Number of steps

15

x = np.log(np.arange(2,N+1,1)).reshape((—1, 1))
13

convert SN into log scale
15y = np.log(S_N)

17 model = LinearRegression ()
1o model. fit (x, y)

21
Once you have your model fitted , you can get the results to check

whether the model works satisfactorily and interpret it.

290

r_sq = model.score(x, vy)
27 print (*coefficient of determination, (R"2 score):’, r_sq)
20 print ('’ ")
31 print ("intercept (log(D) value) :’, — model.intercept_)
33 print (’ ")
35 print ("slope (2v value) :’, model.coef.)
7 print (")
so print (v, exponent :’, 0.5*xmodel.coef.)

7 Conclusion

coefficient of determination, (R"2 score): 0.9997542016816572

N

intercept (log(D) value) : 0.05309610360375849

¢ slope (2v value) : [1.45570481]

8V

, exponent : [0.7278524]

We have very efficient model with R? = 0.99 and the v value is 70.7278524”, which is
very close to current value of the exponent. (The current value of the exponent 0.7766(5)
according to "N Fricke and W Janke, J. Phys. A: Math. Theor. 50 (2017) 264002”)

Possible improvement would be by changing our initial SAW (ESS_SAW) we could avoid
stucking cases (irreducibility), but in the case we need to get same end to end distance SAW’s
(or they can only differ in our error bar in our exponent value), but this gets more and more

16

computational time, because after getting each successfully N step SAW, we need to check
whether they have same lenght.

8 Appendix

17

15

19

V)

A One more example ” Verdier and Stockmayer (1962)”

This algorithm turns one self-avoiding walk into another by moving one or two bonds of the
walk. Briefly, it picks a site at random and tries to ”flip” the two incident bonds if they form
a right angle (or tries to wiggle the end bond if the chosen site is an endpoint of the walk).

1. Let wl% be any self-avoiding walk in Sy. Set t = 0.
2. Choose an integer I uniformly at random from 0, 1, ... , N.

3. Define a new walk @ = (©(0),...,0(N)) , which is not necessarily self-avoiding, as
follows. First set @(I) = wl(l) for all [# I. Then:

(a) if 01N, then set ©(I) = wf(I — 1) + (WA + 1) — WH(1));

(b) if I = N, then set &(N) equal to any neighbour of Wi/ (N — 1) except for wil(N — 2)
and wl(N), chosen at random;

(c) if I = 0, then set @(0) equal to any neighbour of wl(1) except for wl(0) and w!(2)
, chosen at random. Then translate w so that it begins at the origin.

4. If @& is self-avoiding, then set wl*t! = & ; otherwise, set w1 = !t

5. Increase t by one and go to Step 2.

The following code does not contains 4th and 5th parts,
it is testing algorithm to see what it makes.

The complete code will be given after plot func.

def V_S_.SAW _test(N,t): # N step RAW, t Sample
deltas = [[1,0], [0,1], [—=1,0], [0,—1]] # directions
wr = ESSSAW(N) # get self avoiding walk
wr = np.array (wr)
S = np.zeros ((t,N+1,2) ,dtype= np.int64) # container
S[0] = wr.copy() # get first RAW into Oth sample

t samples
for j in range(t):

I = np.random.randint (0 ,N+1) # I uniformly at random from {0, 1,
, N}.

wanew = S[j].copy()

if N>1> 0:

wmnew[I,:] =S[0,I—-1,:] + S[0,I4+1,:] — S[0,I,:] # (x.,y)
elif T = N:

get f_deltas (feasible deltas)

xl = S[j,N,0] — S[j,N=1,0] # S[j,N,:] — S[j ,N—1,:]

yl = S[J 7N’1] - S[J 7N_171] #

18

43

49

~

13

19

23

rl = [x1,y1]

f_deltas = [s for s in deltas if s != rl]
x2 = S[j,N-2,0] — S[j ,N—1,0]
y2 = S[.] 7N_271] - S[J aN_lal]

r2 = [x2,y2]
f_deltas = [s for s in f_deltas if s != r2]
dw = f_deltas [np.random.randint (0,2)]

s |
woanew [N,:] = S[j ,N=1,:] + dw][:]

elif I = 0:

X3 = S[.]7070] - S[.]7170]

r3 = [x3,y3]

f_deltas = [s for s in deltas if s != r3]

x4 = S[j,2,0] — S[j,1,0]
y4 = S[.]7271] - S[.]7171]

rd = [x4,y4]

f_deltas = [s for s in f_deltas if s != r4]

dwl = f_deltas [np.random.randint (0,2)]

woanew [0,:] = S[j,1,:] + dwl]:]

steps for translate so that it begins

dx = wmnew [0] # following

at the origin.
for k in range(N+1):

wonew [k, :] = wmew [k,:] — dx[:]
wr is the original RAW and w._new after applying the algorithm.

return wr, w_new

def

plot_SSAW (N, t) :

Plots the output of the ESSSAW algorithm

Args:

N (int): the length of the walk

Returns:

Plot of the output of the ESSSAW algorithms

s_time=time. time ()
w,w2 = V_S_SAW _test (N, t)
e_time=time . time ()
print (’Computation time:
x =[]
y =[]
for i in range(N+1):
]
]

)

x.append (w[i][0])
1

el

y.append (w[i

r i in range(N+1):
x1.append (w2[i][0])
y1.append (w2[i][1])

plt.figure (figsize = (10, 10)

)
plt.title (’Lenght N =" 4+ str(N) + ’

19

,e_time—s_time , ’s’)

Blue arrows indicate original SAW’

N

o

fontsize=14, fontweight="bold’, y = 1.05)

plt.plot(x, y, ’bo—", linewidth = 1)

plt.plot(x1, y1, ’yo—’, linewidth = 1)

plt . plot ('go’, ms = 12, label = ’Start’)
plt.plot(x[—1], y[—=1], ’ro’, ms = 12, label = ’End’)
plt.plot(x1[—1], y1[—1], ’'ro’, ms = 12, label = "End’)

for 1 in range(N): # in particular we dont need arrows, it will
our calculation time, (one extra loop)

plt .arrow ((x[i]+x[i+1])/2,(y[i]+y[i+1])/2, (x[i+1] — x[i])*0.01,

+1]—y[i])*0.01 , shape=’full’, lw=0, length_includes_head=True,
=.1)

plt.axis(’equal’)

plt.legend (fontsize=15)

plt.savefig ('plot_.SSAW22.png’)

plt .show ()

plot_SSAW (20,1) # only one sample. this is for testing and to see
the algorithm

head,width

what makes

Lenght N =20 Blue arrows indicate original SAW

7 ~—@ @ Start
® End
I ® End
B =
[y
5 <
L
4
A
3
L
2 - T
1 - = =
v
Ak /
o - [>~
-5 -4 -3 -z -1 0 1 2

Figure 6: Verdier and Stockmayer (1962).

B Chronological History[1]

Rosenbluth (1955), biased sampling, Section 9.3.1, up to 64 steps, 0.61 for v

20

Stellman and Gans (1972), a continuum version of the pivot algorithm, Section 9.4.3, up to
298 steps, 0.610 +0.008 for v

Grishman (1973), a combination of the dimerization and enrichment algorithms, Sections
9.3.2 and 9.3.3, 500 steps, 0.602 4+ 0.009

However, these early results, which used relatively short walks, are biased by significant
systematic errors due to unincluded correction to scaling terms. (Section 9.2.1)

Rapaport (1985), a combination of dimerization and enrichment, Sections 9.3.2 and 9.3.3,
2400 steps, 0.592+0.004

Madras and Sokal (1988), the pivot algorithm, Section 9.4.3, 3000 steps, 0.59240.003,
Li and Sokal, recently, pivot algorithm, Section 9.4.3, 80,000 steps, 0.5883 + 0.0013

444 which is in remarkable agreement with the field theoretic renormalization group pre-
diction of 0.5880 4 0.0015 obtained by Le Guillou and Zinn-Justin (1989).
FHHK D243, Table 11.1 Critical exponents for the Ising model and the Heisenberg model,

Andreas Wipf Statistical Approach to Quantum Field Theory An Introduction (2012)

References

[1] Neal Madras and Gordon Slade, 1996. The Self-Avoiding Walk.

[2] Kumiko Hattori, Noriaki Ogo and Takafumi Otsuka, 2018. A family of self avoiding
random walks interpolating the loop erased random walk and a self avoiding walk on the
Sierpiski gasket.

21

