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*Important note:

This project has prepared for ”Advanced Monte Carlo Methods” lecture in winter term
2020/2021, Heidelberg University.

Instead of adding same citations of the book in each part, I hereby declare that almost all
of the explanations and formulas are taken from the book of ”The Self-Avoiding Walk, Neal
Madras and Gordon Slade, 1996”. [1]

Only python codes are implemented by myself.

1 Preparation

A self-avoiding walk (SAW) on a graph is a walk that never visits the same vertex twice. it is
typical example of non-Markov random walks on graphs. This most basic and fully random
process gives us usefull model to apply numerous type of statistical physics problems

One of the basic questions concerning random walks are:
- What is the asymptotic behavior of the walk as the number of steps tends to infinity? To
be more specific, if X(N) denotes the location of the walker starting at the origin after N
steps, does the mean square displacement show a power behavior? In other words, does the
following hold in some sense?

E[|X(n)|2] ∼ N2ν

where |X(N)| denotes the Euclidean distance from the starting point and ν is a positive
constant. If it is the case, what is the value of the displacement exponent ν?

The question originated from the problem of the end-to-end distance of long polymers. Since
no two monomers can occupy the same place, a self-avoiding walk is expected to model
polymers. [2]

These properties of SAW have been studied in various papers and There has been numerous
different numerical aproaches for mean square displacement estimation and the exponent
ν calculations. In this paper I will try to estimate ν parameter by using linear regrassion
method and for Slitherin Snake Length conserved SAW algorithm.

To be able to carry out that I need some standart Python Libraries:
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1 import numpy as np
import matp lo t l i b . pyplot as p l t

3 from sc ipy import spar s e
from matp lo t l i b . t i c k e r import PercentFormatter

5 import sys
import time

7 import random
import copy

1Very usefull reading: https://www.physicsforums.com/insights/fun-self-avoiding-walks/
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pr in t ( sys . g e t r e c u r s i o n l im i t ( ) ) ## to see cur rent r e c u r s i o n l im i t
2

de f r e c u r s i o n l im i t ( r e c u r s i o n l im i t ) : # s e t r e c u r s i o n l im i t to another va lue
4 re turn sys . s e t r e c u r s i o n l im i t ( r e c u r s i o n l im i t )

6 r e c u r s i o n l im i t (20000)
p r i n t ( ’ o r i g i n a l r e c u r s i o n l im i t was 3000 ’ )

8 sys . g e t r e c u r s i o n l im i t ( )

10 #pr inted
###############################

12

20000
14 o r i g i n a l r e c u r s i o n l im i t was 3000

16 20000

2 Elementary Simple Sampling (ESS)

This algorithm generates ordinary simple random walks until it obtains an N-step walk that
is self-avoiding.

The code:

1. Let ω(O) be the origin and set i = 0.

2. Increase i by one. Choose one of the 2d neighbours of ω(i− 1) at random, and let ω(i)
be that point.

3. If ω(i) = ω(j) for some j = 1,2, ... N-1. then go back to Step 1. Otherwise go to Step
2 if i < N , and stop if i = N.

the walk W = (ω(0), ..., ω(N) ) is selfavoiding. We claim that for any ω ε SN , we have
Pr(W=ω)= 1

cN

To see this, let SN be the set of all N step (ordinary) simple walks. If we keep choosing
members of SN uniformly at random until one of them is in SN , then the final result is
evidently uniformly distributed on SN .

– the probability that an N-step simple random walk is self-avoiding; CN

(2d)N
, the (2d)N term

is the number of all possible simple random walks. so the expected number of attempts

(i.e.returns to Step 1) is (2d)N

CN
Therefore, using the notation TX to represent the expected

amount of computer time required for algorithm X to generate a single N -step self-avoiding
walk, we have,
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TESS = (
2d

µ
)N+o(N)

We can improve on the efficiency of ESS by only generating simple random walks with no
immediate reversals.

2 de f ESS SAW(N) :

4 # Pos s i b l e d i r e c t i o n s
d e l t a s = [ [ 1 , 0 ] , [ 0 , 1 ] , [ −1 ,0 ] , [ 0 , −1 ] ]

6

# conta ine r
8 a = [ 0 , 0 ]

wi = [ ]
10 f o r j in range (N+1) :

wi . append ( [ 0 , 0 ] )
12 w = wi

14 # Main
f o r i in range (N) :

16

# randomly chosen step
18 dw= de l t a s [ np . random . rand int (0 , 4 ) ]

a [ 0 ] = w[ i ] [ 0 ]+ dw [ 0 ]
20 a [ 1 ] = w[ i ] [ 1 ]+ dw [ 1 ]

22 # whether SAW or not
i f a in w:

24 #i f not c a l l again the same func t i on r e c u r s i v e l y
w = ESS SAW(N)

26 break
e l s e :

28 w[ i +1 ] [ 0 ] = a [ 0 ]
w[ i +1 ] [ 1 ] = a [ 1 ]

30 re turn w

1

de f plot ess SAW (N, fnc ) :
3

”””
5 Plot s the output o f the ESS SAW algor i thm

7 Args :
N ( i n t ) : the l ength o f the walk

9 Returns :
Plot o f the output o f the ESS RAW algor i thms

11 ”””

13 s t ime=time . time ( )
w = fnc (N)
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15 e t ime=time . time ( )
p r i n t ( ’ Computation time : ’ , e t ime−s t ime , ’ s ’ )

17 x =[ ]
y =[ ]

19 f o r i in range (N+1) :
x . append (w[ i ] [ 0 ] )

21 y . append (w[ i ] [ 1 ] )
p l t . f i g u r e ( f i g s i z e = (10 , 10) )

23 p l t . t i t l e ( s t r ( fnc )+ ’ Lenght N =’ + s t r (N) , f o n t s i z e =14, fontwe ight=’ bold ’ ,
y = 1 . 05 )
p l t . p l o t (x , y , ’ bo− ’ , l i n ew id th = 1)

25 p l t . p l o t (0 , 0 , ’ go ’ , ms = 12 , l a b e l = ’ Star t ’ )
p l t . p l o t ( x [−1] , y [−1] , ’ ro ’ , ms = 12 , l a b e l = ’End ’ )

27 p l t . ax i s ( ’ equal ’ )
p l t . l egend ( f o n t s i z e =15)

29 p l t . show ( )
p l t . s a v e f i g ( ’ plot ess SAW . png ’ )

1

plot ess SAW (15 ,ESS SAW)

Computation time: 0.0007064342498779297 s

Figure 1: ESS SAW.
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3 The Slithering Snake Algorithm

The Slithering Snake length-conserving dynamic algorithm was devised by Kron (1965) and
by Wall and Mandel (1975) [see also Kron et at. (1967) and Mandel (1979)]. The basic move
of the algorithm is to remove a bond from one end of the current walk while simultaneously
trying to add a bond to the other end (rejecting the result if it is not self-avoiding). For
an explicit description, use the following procedure as Step 2 in the Generic Fixed-Length
Dynamic Algorithm.

1) Generate a random variable X which equals 0 with probability 1/2 and equals N with
probability 1/2.

2) If X = 0, then let Y be one of the 2d nearest neighbours of ω[t](0) (chosen uniformly at
random)

3) and set ω̃ = (Y, ω[t](0), ..., ω[t](N − 1))

4) If X = N then let Y be one of the 2d nearest neighbours of ω[t](N)

5) and set ω̃ = (ω[t](1), ..., ω[t](N), Y )

1

de f s l i t h e r i n g s n a k e (w) :
3 ’ ’ ’

by choos ing randomly one o f the end ( f i r s t or l a s t ) po int o f a g iven w−
SAW

5

i s go ing to change with new nea r e s t ne ighbours o f the po int
7

so that produce a new SAR w new .
9

Args :
11 w: (x , y ) ( l i s t , l i s t ) SAW

13 Returns :

15 w new : (x , y ) ( l i s t , l i s t ) SAW

17 ’ ’ ’
N = len (w)

19

# take randomly 0 or N
21

x = random . cho i c e ( [ 0 ,N] )
23

# SAW po s s i b l e s t ep s
25

de l t a s = [ [ 1 , 0 ] , [ 0 , 1 ] , [ −1 ,0 ] , [ 0 , −1 ] ]
27

# get one o f them randomly
29

dw= de l t a s [ np . random . rand int (0 , 4 ) ]
31

w new = copy . deepcopy (w)
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33

wnew =[ ]
35

# change f i r s t po int o f SAW, w
37

i f x == 0 :
39

# de l e t e the l a s t element o f w
41

de l w new[−1]
43

# add f i r s t s tep to do 3)
45

w new [ 0 : 0 ] = [dw ]
47

e l s e :
49

# change l a s t po int o f SAW, w
51

de l w new [ 0 ]
53

w new . append ( [ w new [ −1 ] [ 0 ] + dw [ 0 ] , w new [ −1 ] [ 1 ] + dw [ 1 ] ] )
55

57 # check SAW or not

59 # to do that c r e a t e a new l i s t which has only unique e lements
b=[ ]

61

f o r [ a , c ] in w new :
63 # Add to the new l i s t

# only i f not pre sent
65 i f [ a , c ] not in b :

b . append ( [ a , c ] )
67

i f l en (b) != l en (w new) :
69 # pr in t ( ’ not saw ’ )

wnew = s l i t h e r i n g s n a k e (w)
71

e l s e :
73 # pr in t ( ’ saw ’ )

#t r a n s l a t e a l l po in t s to be f i r s t s tep (0 , 0 )
75

# get the f i r s t element o f the l i s t
77

f = copy . deepcopy (w new [ 0 ] )
79

# t r an s l a t e so that i t beg ins at the o r i g i n .
81

f o r [ a , b ] in w new :
83 wnew . append ( [ a−f [ 0 ] , b−f [ 1 ] ] )

85 re turn wnew
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de f p l o t c i c e k (w) :
2 x =[ ]

y =[ ]
4 f o r i in range ( l en (w) ) :

x . append (w[ i ] [ 0 ] )
6 y . append (w[ i ] [ 1 ] )

p l t . f i g u r e ( f i g s i z e = (6 , 6) )
8 p l t . t i t l e ( ’SAW of Lenght N =’ + s t r ( l en (w) ) , f o n t s i z e =14, fontwe ight=’

bold ’ , y = 1 . 05 )
p l t . p l o t (x , y , ’ bo− ’ , l i n ew id th = 1)

10 p l t . p l o t (0 , 0 , ’ go ’ , ms = 12 , l a b e l = ’ Star t ’ )
p l t . p l o t ( x [−1] , y [−1] , ’ ro ’ , ms = 12 , l a b e l = ’End ’ )

12 p l t . ax i s ( ’ equal ’ )
p l t . l egend ( f o n t s i z e =15)

14 p l t . s a v e f i g ( ’ p l o t c i c e k 2 . png ’ )
p l t . show ( )

16

w = ESS SAW(20)
18 ws = s l i t h e r i n g s n a k e (w)

20 pr in t (ws )

22 p l o t c i c e k (ws )

24 #pr inted
###############################

26

[ [ 0 , 0 ] , [−1 , 0 ] , [−1 , −1] , [−1 , −2] , [−2 , −2] , [−2 , −3] , [−3 , −3] , [−3 , −2] ,
[−3 , −1] , [−3 , 0 ] , [−4 , 0 ] , [−4 , 1 ] , [−4 , 2 ] , [−4 , 3 ] , [−4 , 4 ] , [−5 , 4 ] ,
[−6 , 4 ] , [−6 , 3 ] , [−7 , 3 ] , [−7 , 4 ] , [−7 , 5 ] ]
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(a) slithering snake. (b) slithering snake2.

Figure 2: For a given SAW two different results of Slithering Snake

2 p l o t c i c e k (w)

4 Irreducibility

The nature of these moves has earned this algorithm and its variants the names ”slithering
snake” and ”reptation” (the latter term is also used in polymer dynamics to describe similar
motions of real polymers.) This algorithm is reversible, but it is not irreducible:for example
a given ESS SAW below:
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Figure 3: Stuck.

the walk is frozen with respect to the slithering-snake algorithm in Z2. In fact, for sufficiently
large N, it turns out that a positive fraction of all N-step walks are frozen, because there is
a positive probability that both ends of the walk are ”trapped” and cannot be extended by
a single step in any direction.

To be more precise, let ΦN denote the set of all walks in SN which are frozen with respect to
the slithering-snake algorithm (that is, ω is in ΦN if and only if the ergodicity class containing
ω has cardinality one). let P be a proper front pattern with the property that the 2d nearest
neighbours of the first site of P are all sites of P.Let R be the walk whose sites are the sites
of P in reverse order Then any self-avoiding walk that begins with the pattern P and ends
with the pattern R must be frozen SN(P,R) ⊂ ΦN . Therefore;

limN−>∞
|ΦN |
cN

> 0

More detailed discussion, (Madras and Slade, 1996, p. 320)

5 Mean Square Displacement

Denoting expectation with respect to the uniform measure by angular brackets, the average
distance (squared) from the origin after N steps is then given by the mean-square displace-
ment

< |ω(N)|2 >=
1

cN
Σω:|ω|=N |ω(N)|2
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Where CN denote the number of N-step self-avoiding walks beginning at the origin.

Like CN , the mean-square displacement can also be calculated by hand for very small values
of N, but the combinatorics quickly become intractable as N increases.

It is instructive to compare the behaviour of the self-avoiding walk with that of the simple
random walk. An N-step simple random walk on Zd starting at the origin, is a sequence
ω = (ω(0), ω(1), ..., ω(N)) of sites with ω(0) = 0 and |ω(j + 1) − ω(j)| = 1, with the
uniform measure on the set of all such walks. Without the self-avoidance constraint the
situation is rather easy. Indeed, since each site has 2d nearest neighbours, the number of
N -step simple random walks is exactly (2d)N . To analyse the mean square displacement,
we represent the simple random walk in the following way. Let X(i) be independent and
identically distributed random variables with X(i) uniformly distributed over the 2d (positive
and negative) unit vectors. Then the position after N steps can be represented as the sum
SN = X(1) +X(2) + ...+X(N). Expanding |SN |2 the mean-square displacement is given by

< |SN |2 >=
N∑

i,j=1

< X(i).X(j) >

For i 6= j, < X(i).X(j) >= 0, using independence and the fact that < X(i) >= 0. Since
< X(i).X(j) >= 1 , it follows that the mean-square displacement is equal to N. Similarly,
if we consider a random walk in Zd in which steps lie in a symmetric finite set Ω ⊂ Zd of
cardinality |Ω|, with each possible step equally likely, then the number of N-step walks is
|Ω|N and the mean-square displacement is Nσ2 where σ2 is the mean-square displacement
of a single step. (in our question it is eqal to ”1”)

For the self-avoiding walk it is believed that there is exponential growth of CN with power
law corrections, unlike the pure exponential growth of the simple random walk. It is also
believed that the mean-square displace- ment will not always be linear in the number of steps,
in contrast to the diffusive behaviour of the simple random walk. These beliefs are in har-
mony with known properties of other models of statistical mechanics, and are supported by
numerical and nonrigorous calculations. The conjectured behaviour of CN and < |ω(N)|2 >
is thus:

Cn ∼ AµNNγ−1

and,

< |ω(N)|2 >∼ DN2ν

(Madras and Slade, 1996, p. 3,4,5)

2

2to see more detailed discussion, (Madras and Slade, 1996, p. 292)
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1

de f S(w) :
3 ’ ’ ’ c a l c u l a t e d i sp lacement square dx∗∗2 + dy∗∗2 f o r w ’ ’ ’

5 S = w[ −1 ] [ 0 ] ∗∗2 + w[ −1 ] [ 1 ] ∗∗2

7 re turn S

2 de f mean square disp lacement ( times ,w) :
’ ’ ’

4 Args :

6 t imes : i n t e g e r , number o f d e s i r ed samples

8 w: (x , y ) ( l i s t , l i s t ) SAW

10 Returns :

12 s n / t imes : f l o a t type Mean Square

14 ’ ’ ’
# pr in t ( ’ g iven SAW w: ’ )

16 # pr in t(’−−−−−−−−−−−−’)
# pr in t (w)

18

# s t ime=time . time ( )
20

# by us ing s l i t h e r i n g s n a k e method produce a new SAW
22 w123 = s l i t h e r i n g s n a k e (w)

24

s n = 0 .0 # f o r mean
26

f o r i in range ( t imes ) :
28 w123 = s l i t h e r i n g s n a k e (w123 )

s n +=S(w123 )
30

# e t ime=time . time ( )
32

# pr in t ( ’ Computation time : ’ , e t ime−s t ime , ’ s ’ )
34 re turn s n / t imes

1

mean square disp lacement (10000 ,w)
3

#pr inted
5 ###############################
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7 72.2278

2 de f main c icek (N, t imes ) :

4 #times : number o f samples

6 S N =[ ]

8 pr in t ( ’ Computation time N step s i z e ESS SAW ’ )

10 #s t ime3=time . time ( )

12 f o r i in range (2 ,N+1) : #to c r ea t e from 2 step to N step SAW by us ing
ESS SAW func t i on

14 s t ime2=time . time ( )

16 # ESS SAW algor i thm might g ive Recurs ionError
# then try i t again

18 whi le N > 0 :
t ry :

20 w = ESS SAW( i )
break

22 except Recurs ionError :
pass

24

e t ime2=time . time ( )
26

pr in t ( ” { : . 5 f }” . format ( ( e t ime2−s t ime2 ) ∗ 100) , ’ s ’ +
s t r ( i ) , end=”\ r ” , f l u s h=True )

28

# fo r N<11 step SAWs, i t i s enough to work with 10000 samples
30 i f i < 11 and times >20000:

S l = mean square disp lacement (20000 ,w)
32 S N . append ( S l )

e l s e :
34 # ca l c u l a t e mean square d i sp lacements

S l = mean square disp lacement ( times ,w)
36 S N . append ( S l )

38 #e t ime3=time . time ( )

40 #pr in t ( e t ime3−s t ime3 , ’ s ’ )

42 re turn S N

1

de f p l o t c i c o (N, t imes ) :
3 ’ ’ ’ Po s s i b l e improvement i s that one can c r ea t e t imes l i s t ,
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because i t does not need too much samples f o r few s t ep s .
5 Actua l ly the mean can e a s i l y s t a b i l i z e N<10 step SAW’ ’ ’

7 s t ime=time . time ( )

9 Ni = np . arange (2 ,N+1 ,1) # conta in s d i f f e r e n t N steps , from 1 to N
y = main c icek (N, t imes )

11

p l t . f i g u r e ( f i g s i z e = (7 , 7) )
13 p l t . p l o t (Ni , y )

p l t . t i t l e ( ’SAWs o f Length up to = ’ + s t r (N) + ’ ( Mean ca l c u l a t ed by ’
+ s t r ( t imes ) + ’ samples SAW ) ’ , f o n t s i z e =14, fontwe ight=’ bold ’ , y =
1 . 05 )

15 p l t . y l ab e l ( ’ S N mean ’ )
p l t . x l ab e l ( ’N ’ )

17 p l t . show ( )
p l t . s a v e f i g ( ’ p l o t c i c o . png ’ )

19

e t ime=time . time ( )
21

pr in t ( ’ Totat Computation time : ’ , ( e t ime−s t ime ) ∗ 100 , ’ s ’ )
23

p l o t c i c o (25 ,100000)
25

#pr inted
27 ###############################

29 Computation time N step s i z e ESS SAW
16.35380 s 25

Figure 4: SAWs of Mean Square Length up to 25 steps.
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Totat Computation time: 20481.652569770813 s

6 Estimating v with Linear Regression

On a double-logarithmic scale it can be seen more precisely

< |ω(N)|2 >∼ DN2ν

Y = DN2ν

log(Y ) = log(D) + 2νlog(N)

Figure 5: SAWs of Mean Square Length up to 25 steps (log. scaled).

Computation time N step size ESS SAW 45.16487 s 25

1

# l i n e a r f i t
3 from sk l ea rn . l i n ea r mode l import L inearRegre s s i on

5 N=25
times = 200000

7

# get mean square d i sp lacements up to N s t ep s
9 S N = main c icek (N, t imes )

11 # in loga r i thmi c s c a l e Number o f s t ep s

15



x = np . l og (np . arange (2 ,N+1 ,1) ) . reshape ((−1 , 1) )
13

# convert S N in to log s c a l e
15 y = np . l og (S N)

17 model = LinearRegre s s i on ( )

19 model . f i t (x , y )

21 ’ ’ ’
Once you have your model f i t t e d , you can get the r e s u l t s to check

23

whether the model works s a t i s f a c t o r i l y and i n t e r p r e t i t .
25 ’ ’ ’

r s q = model . s c o r e (x , y )
27 pr in t ( ’ c o e f f i c i e n t o f determinat ion , (Rˆ2 s co r e ) : ’ , r s q )

29 pr in t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )

31 pr in t ( ’ i n t e r c e p t ( l og (D) value ) : ’ , − model . i n t e r c e p t )

33 pr in t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )

35 pr in t ( ’ s l ope (2v value ) : ’ , model . c o e f )

37 pr in t ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )

39 pr in t ( ’ v , exponent : ’ , 0 . 5 ∗model . c o e f )

7 Conclusion

2 c o e f f i c i e n t o f determinat ion , (Rˆ2 s co r e ) : 0 .9997542016816572
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 i n t e r c e p t ( l og (D) value ) : 0 .05309610360375849
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 s l ope (2v value ) : [ 1 . 4 5570481 ]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 v , exponent : [ 0 . 7 2 78524 ]

We have very efficient model with R2 = 0.99 and the ν value is ”0.7278524”, which is
very close to current value of the exponent. (The current value of the exponent 0.7766(5)
according to ”N Fricke and W Janke, J. Phys. A: Math. Theor. 50 (2017) 264002”)

Possible improvement would be by changing our initial SAW (ESS SAW) we could avoid
stucking cases (irreducibility), but in the case we need to get same end to end distance SAW’s
(or they can only differ in our error bar in our exponent value), but this gets more and more

16



computational time, because after getting each successfully N step SAW, we need to check
whether they have same lenght.

8 Appendix
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A One more example ”Verdier and Stockmayer (1962)”

This algorithm turns one self-avoiding walk into another by moving one or two bonds of the
walk. Briefly, it picks a site at random and tries to ”flip” the two incident bonds if they form
a right angle (or tries to wiggle the end bond if the chosen site is an endpoint of the walk).

1. Let ω[0] be any self-avoiding walk in SN . Set t = 0.

2. Choose an integer I uniformly at random from 0, 1, ... , N.

3. Define a new walk ω̃ = (ω̃(0), ..., ω̃(N)) , which is not necessarily self-avoiding, as
follows. First set ω̃(l) = ω[t](l) for all l 6= I. Then:

(a) if 0 ¡ I ¡ N , then set ω̃(I) = ω[t](I − 1) + (ω[t](I + 1)− ω[t](I));

(b) if I = N, then set ω̃(N) equal to any neighbour of ω[t](N − 1) except for ω[t](N − 2)
and ω[t](N), chosen at random;

(c) if I = 0, then set ω̃(0) equal to any neighbour of ω[t](1) except for ω[t](0) and ω[t](2)
, chosen at random. Then translate ω̃ so that it begins at the origin.

4. If ω̃ is self-avoiding, then set ω[t+1] = ω̃ ; otherwise, set ω[t+1] = ω[t]

5. Increase t by one and go to Step 2.

1

3 ’ ’ ’
The f o l l ow i ng code does not conta in s 4 th and 5th parts ,

5 i t i s t e s t i n g a lgor i thm to see what i t makes .

7 The complete code w i l l be g iven a f t e r p l o t func .

9 ’ ’ ’

11

de f V S SAW test (N, t ) : # N step RAW, t Sample
13 de l t a s = [ [ 1 , 0 ] , [ 0 , 1 ] , [ −1 ,0 ] , [ 0 , −1 ] ] # d i r e c t i o n s

wr = ESS SAW(N) # get s e l f avo id ing walk
15 wr = np . array (wr )

S = np . z e r o s ( ( t ,N+1 ,2) , dtype= np . in t64 ) # conta ine r
17 S [ 0 ] = wr . copy ( ) # get f i r s t RAW into 0 th sample

19 # t samples
f o r j in range ( t ) :

21 I = np . random . rand int (0 ,N+1) # I uni formly at random from {0 , 1 , . . .
, N} .

w new = S [ j ] . copy ( )
23 i f N > I > 0 :

w new [ I , : ] = S [ 0 , I −1 , : ] + S [ 0 , I +1 , : ] − S [ 0 , I , : ] # (x , y )
25 e l i f I == N:

# get f d e l t a s ( f e a s i b l e d e l t a s )
27 x1 = S [ j ,N, 0 ] − S [ j ,N−1 ,0] # S [ j ,N , : ] − S [ j ,N−1 , : ]

y1 = S [ j ,N, 1 ] − S [ j ,N−1 ,1] #
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29 r1 = [ x1 , y1 ]
f d e l t a s = [ s f o r s in d e l t a s i f s != r1 ]

31 x2 = S [ j ,N−2 ,0] − S [ j ,N−1 ,0]
y2 = S [ j ,N−2 ,1] − S [ j ,N−1 ,1]

33 r2 = [ x2 , y2 ]
f d e l t a s = [ s f o r s in f d e l t a s i f s != r2 ]

35 dw = f d e l t a s [ np . random . randint (0 , 2 ) ]
w new [N , : ] = S [ j ,N−1 , : ] + dw [ : ]

37 e l i f I == 0 :
x3 = S [ j , 0 , 0 ] − S [ j , 1 , 0 ]

39 y3 = S [ j , 0 , 1 ] − S [ j , 1 , 1 ]
r3 = [ x3 , y3 ]

41 f d e l t a s = [ s f o r s in d e l t a s i f s != r3 ]
x4 = S [ j , 2 , 0 ] − S [ j , 1 , 0 ]

43 y4 = S [ j , 2 , 1 ] − S [ j , 1 , 1 ]
r4 = [ x4 , y4 ]

45 f d e l t a s = [ s f o r s in f d e l t a s i f s != r4 ]
dw1 = f d e l t a s [ np . random . rand int (0 , 2 ) ]

47 w new [ 0 , : ] = S [ j , 1 , : ] + dw1 [ : ]
dx = w new [ 0 ] # f o l l ow i ng s t ep s f o r t r a n s l a t e so that i t beg ins

at the o r i g i n .
49 f o r k in range (N+1) :

w new [ k , : ] = w new [ k , : ] − dx [ : ]
51 # wr i s the o r i g i n a l RAW and w new a f t e r apply ing the a lgor i thm .

re turn wr , w new

1

de f plot SSAW(N, t ) :
3 ”””

Plot s the output o f the ESS SAW algor i thm
5

Args :
7 N ( in t ) : the l ength o f the walk

Returns :
9 Plot o f the output o f the ESS SAW algor i thms

”””
11 s t ime=time . time ( )

w,w2 = V S SAW test (N, t )
13 e t ime=time . time ( )

p r i n t ( ’ Computation time : ’ , e t ime−s t ime , ’ s ’ )
15 x =[ ]

y =[ ]
17 f o r i in range (N+1) :

x . append (w[ i ] [ 0 ] )
19 y . append (w[ i ] [ 1 ] )

x1 =[ ]
21 y1 =[ ]

f o r i in range (N+1) :
23 x1 . append (w2 [ i ] [ 0 ] )

y1 . append (w2 [ i ] [ 1 ] )
25 p l t . f i g u r e ( f i g s i z e = (10 , 10) )

p l t . t i t l e ( ’ Lenght N =’ + s t r (N) + ’ Blue arrows i nd i c a t e o r i g i n a l SAW’ ,
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f o n t s i z e =14, fontwe ight=’ bold ’ , y = 1 . 05 )
27 p l t . p l o t (x , y , ’ bo− ’ , l i n ew id th = 1)

p l t . p l o t ( x1 , y1 , ’ yo− ’ , l i n ew id th = 1)
29 p l t . p l o t (0 , 0 , ’ go ’ , ms = 12 , l a b e l = ’ Star t ’ )

p l t . p l o t ( x [−1] , y [−1] , ’ ro ’ , ms = 12 , l a b e l = ’End ’ )
31 p l t . p l o t ( x1 [−1] , y1 [−1] , ’ ro ’ , ms = 12 , l a b e l = ’End ’ )

f o r i in range (N) : # in p a r t i c u l a r we dont need arrows , i t w i l l i n c r e a s e
our c a l c u l a t i o n time , ( one ext ra loop )

33 p l t . arrow ( ( x [ i ]+x [ i +1]) /2 , ( y [ i ]+y [ i +1]) /2 , ( x [ i +1] − x [ i ] ) ∗ 0 . 01 , ( y [ i
+1]−y [ i ] ) ∗ 0 .01 , shape=’ f u l l ’ , lw=0, l e ng th i n c l ud e s h ead=True , head width
=.1)
p l t . ax i s ( ’ equal ’ )

35 p l t . l egend ( f o n t s i z e =15)
p l t . s a v e f i g ( ’ plot SSAW22 . png ’ )

37 p l t . show ( )

39 plot SSAW(20 ,1 ) # only one sample . t h i s i s f o r t e s t i n g and to see what makes
the a lgor i thm

Figure 6: Verdier and Stockmayer (1962).

B Chronological History[1]

Rosenbluth (1955), biased sampling, Section 9.3.1, up to 64 steps, 0.61 for v
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Stellman and Gans (1972), a continuum version of the pivot algorithm, Section 9.4.3, up to
298 steps, 0.610 ±0.008 for ν

Grishman (1973), a combination of the dimerization and enrichment algorithms, Sections
9.3.2 and 9.3.3, 500 steps, 0.602 ± 0.009

However, these early results, which used relatively short walks, are biased by significant
systematic errors due to unincluded correction to scaling terms. ( Section 9.2.1 )

Rapaport (1985), a combination of dimerization and enrichment, Sections 9.3.2 and 9.3.3,
2400 steps, 0.592±0.004

Madras and Sokal (1988), the pivot algorithm, Section 9.4.3, 3000 steps, 0.592±0.003,

Li and Sokal, recently, pivot algorithm, Section 9.4.3, 80,000 steps, 0.5883 ± 0.0013

**** which is in remarkable agreement with the field theoretic renormalization group pre-
diction of 0.5880 ± 0.0015 obtained by Le Guillou and Zinn-Justin (1989).

**** p.243, Table 11.1 Critical exponents for the Ising model and the Heisenberg model,
Andreas Wipf Statistical Approach to Quantum Field Theory An Introduction (2012)
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